Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5181486 | Polymer | 2014 | 10 Pages |
To provide self-healing ability to polyurethane elastomer, alkoxyamine-based diol was synthesized and reacted with tri-functional homopolymer of hexamethylene diisocyanate (tri-HDI) and polyethylene glycol (PEG). Because alkoxyamines acted as crosslinkers of the resultant polyurethane, the thermally reversible fission/recombination of C-ON bonds in alkoxyamine moieties enabled repeated crosslinking and de-crosslinking of polyurethane chains at certain temperature and hence crack healing. Both qualitative and quantitative characterizations demonstrated that the reversibly crosslinked polyurethane was capable of re-bonding ruptured parts and restoring mechanical strength. The remendability was a function of molecular structure and compositions of the components, which can be purposely tuned according to different application demands.
Graphical abstractDownload full-size image