Article ID Journal Published Year Pages File Type
5183676 Polymer 2011 7 Pages PDF
Abstract

Miniemulsion polymerization is most suitable for the targeted synthesis of vinyl copolymers than the conventional emulsion polymerization, because in miniemulsion polymerization each monomer nanodroplet is a nanoreactor, and the monomers in each droplet are in situ converted to the corresponding polymers. Soluble and hyperbranched poly(methyl methacrylate)s (PMMA) were prepared with quantitative monomer conversion and without gelation by the miniemulsion copolymerization with di- and tri-acrylate and mediated with 1-dodecyl thiol (DDT). DDT acted both as a gelation prohibitor and as a reactive cosurfactant. The PMMAs with varied “X” or “Ж” shaped branches, depending on the di- and tri-functional acrylate used as the branching agent, are characterized and interpreted in terms of the repeating units per part, parts and branches per macromolecule, average molecular weight, latex particle size and size distribution. Effects of topology changes of the branched PMMAs on the rheological behaviors are observed for the first time: from Newtonian flow for the densely branched PMMAs to the non-Newtonian flow with pronounced shear thickening for the PMMA samples with high-molecular-weight and longer parts.

Graphical abstractDownload full-size image

Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, , , ,