Article ID Journal Published Year Pages File Type
5183741 Polymer 2012 15 Pages PDF
Abstract

We report on the influence of parameters controlling filler dispersion and mechanical reinforcement in model nanocomposites. We elaborate a series of nanocomposites and present a structural characterization of silica dispersion in polymer matrix for several particle sizes and polymer matrices, at all relevant scales, by coupling Small Angle X-ray Scattering and Transmission Electronic Microscopy. The mechanical properties are investigated in the linear regime by coupling Dynamical Mechanical Analysis and plate/plate rheology. The results show that: (i) for all filler sizes and matrices, a structural transition is observed from non-connected fractal aggregates at low silica concentration to connected network at high particle content. (ii) In the dilute regime, the reinforcement implies a polymer chain contribution with different possible origins: increase of entanglements density for PS and increase of friction coefficient for PMMA. (iii) In the concentrated regime, for a given polymer, the reinforcement amplitude can be tuned by the rigidity of the filler network, which directly depends on the particle-particle interaction.

Graphical abstractDownload full-size image

Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, , , ,