Article ID Journal Published Year Pages File Type
5183927 Polymer 2010 7 Pages PDF
Abstract

Gaining a deeper understanding of the growth of poly(3,4-ethylenedioxythiophene) (PEDOT) films by vapour phase polymerisation (VPP) is essential for the rational design and optimization of such films. The VPP process was used to synthesise films of PEDOT on oxidant-coated substrates. Atomic force microscopy images showed that the morphology of the films changed considerably with time. Utilising a quartz crystal microbalance with dissipation measurement (QCM-D), we found that the kinetics of polymerisation and the viscoelastic properties of the films varied. The data reveal four distinct stages in film growth. Each stage produces a layer having different conductivity values, from a low of 276 S cm−1 to a high of 1196 S cm−1. Conductivity and electrochromic optical contrast, Δ%Tx, can thus be maximized by appropriate termination of the polymerisation reaction. Factors determining the polymerisation rate and changes in conductivity and optical performance are discussed.

Graphical abstractDownload full-size image

Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, , , , , ,