Article ID Journal Published Year Pages File Type
5184360 Polymer 2010 7 Pages PDF
Abstract

Multi-walled carbon nanotubes (MWNTs) were dispersed, for the first time, in cellulose solution in 9.5 wt% NaOH/4.5 wt% thiourea aqueous system pre-cooled to −5 °C. Dynamic light scattering and transmission electron microscopy results revealed a relatively strong interaction existed between MWNTs and the cellulose macromolecules, leading to a good dispersion of MWNTs in the cellulose solution. Their rheological behaviors, especially the sol-gel transition were investigated by using the advanced rheological expanded system on the basis of Winter and Chambon theory. The gel point and gel concentration of the cellulose/MWNTs solution system were determined, indicating a regularly rheological behavior. The data of loss tangent and relaxation exponent (n) indicated an enhancement in the viscoelasticity of the MWNTs/cellulose system. The results from scaling law before and beyond the sol-gel transition in the MWNTs/cellulose system confirmed that the cluster formation and alteration of the gelation structure occurred at the gel point. Interestingly, the n values calculated by both the Winter and Chambon theory and scaling law were coincident only at relatively low temperature. The predicted gel strength values of the MWNTs/cellulose system were significantly larger than the pure cellulose solution, suggesting a relatively high strength, supported by the mechanical strength of the cellulose/MWNTs material.

Graphical abstractDownload full-size image

Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, ,