Article ID Journal Published Year Pages File Type
5185306 Polymer 2010 4 Pages PDF
Abstract

To overcome the low ionic conduction of existing poly(ethylene oxide)-based polymer electrolytes, we consider polycarbonates obtained from the copolymerization of CO2 and epoxy monomers. We synthesized four types of polycarbonates possessing phenyl, n-butyl, t-butyl and methoxyethyl side groups using zinc glutarate, and measured the ionic conductivity of their electrolytes, including 10 mol% of LiTFSI. The electrolyte possessing methoxyethyl side groups had the highest conductivity, of the order of 10−6 S cm−1 at room temperature. The activation energy (Ea) for ionic conduction in the polycarbonate electrolytes was estimated from the VTF equation, and the Ea of the electrolyte possessing n-butyl side groups was almost the same with the polyether-based electrolytes. An interesting feature of our study is that the polycarbonate is a unique candidate for ion-conductive polymers because of its flexible and hydrophobic properties.

Graphical abstractDownload full-size image

Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, , ,