Article ID Journal Published Year Pages File Type
5185564 Polymer 2010 9 Pages PDF
Abstract

Polyvinyl alcohol (PVA) nanofibers, PVA/Type I Collagen (Col) and their composites with hydroxyapatite nanoparticles (nano-HAp) were prepared by electrospinning techniques. The composite nanofibrous membranes were subjected to detailed analysis. Morphological investigations show that the generated nanofibers (NFs) have uniform morphology with an average diameter of ∼160 nm for pure PVA, ∼176 nm for PVA/n-HAp, ∼245 nm for PVA/Col and ∼320 nm for PVA/Col/n-HAp. It is of interest to observe that large numbers of HAp nanorods are preferentially oriented parallel to the longitudinal direction of the electrospun PVA and/or PVA/Col NFs. FTIR and thermal analysis demonstrated that there was strong intermolecular hydrogen bonding between the molecules of PVA/Col/n-HAp. Furthermore, the obtained PVA/Col/nHAp NFs scaffold (7 cm × 11 cm) has a porous structure with adjustable pore size and shape. The pore size is in the range of 650 μm with a porosity of 49.5%. On the other hand, mechanical characterizations revealed that the incorporating of 5 wt% n-HAp into the matrix of PVA/Col nanofibers could significantly improve the rigidity of the resultant biocomposite nanofibrous scaffold. These results strongly suggest a huge potential of the prepared scaffold for bone tissue engineering.

Graphical abstractDownload full-size image

Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, , ,