Article ID Journal Published Year Pages File Type
5186850 Polymer 2005 6 Pages PDF
Abstract

Later-stage spinodal decomposition (SD) of polymer solutions (polypropylene/trichlorofluoromethane) induced by pressure-jump was examined in situ as a function of pressure P by using time-resolved light scattering method with the cell designed for high pressure and high temperature. The time-evolution of the magnitude of scattering vector qm(t,P) at maximum scattered intensity and the maximum scattered intensity Im(t,P) were analyzed in order to characterize the coarsening processes of the later-stage SD, where t refers to time after the onset of pressure-jump. The changes in qm(t,P) and Im(t,P) with t at different P's were found to fall onto the respective master curves on the reduced plots, indicating that the scaling postulate is valid not only for the coarsening behaviors at different temperatures but for those at different P's.

Keywords
Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, , , ,