Article ID Journal Published Year Pages File Type
5187667 Polymer 2008 6 Pages PDF
Abstract

Chemically modified starch paste (MST) with polybutylacrylate (PBA) graft chains is investigated as a reinforcing filler of rubber through mixing and co-coagulating with natural rubber (NR) latex. The PBA graft chains are designed to prevent hydrogen bonding and crystallization of starch and to improve compatibility between starch and rubber. Through the comparison of mechanical properties and phase morphology, MST is proved to be much superior to unmodified starch paste. Unmodified starch paste acts as essentially inert filler causing a decrease of tensile strength, tear strength and elongation at break. In contrast, optimum MST shows obvious reinforcement effect on NR matrix by increasing tensile strength, elongation at break and tear strength besides modulus and hardness. Moreover, fine starch dispersion and strong interfacial interaction are achieved in NR/MST composites. The observed reinforcement effect is interpreted based on the results of X-ray diffraction (XRD), differential scanning calorimetry (DSC) and scanning electron microscope (SEM) analyses of grafted starch in comparison with natural starch and gelatinized starch.

Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, , ,