Article ID Journal Published Year Pages File Type
5187734 Polymer 2005 9 Pages PDF
Abstract
The effect of styrene content on non-exponential and non-Arrhenius behavior of the α-relaxation of cured unsaturated polyester resins (UPR) was investigated by dynamic mechanical analysis (DMA). To compare the temperature dependence of the relaxation times, the Angell fragility concept was applied to samples with different crosslink densities. Furthermore, the number of structural units per cooperatively rearranging region (CRR) was estimated using random walk model and the modified Adam-Gibbs theory. The results showed that rising styrene content enhanced the crosslink density of the networks, which altered the intensity and broadness of the α-relaxation. The fragility index, a measure of temperature dependence of relaxation time, and the average size of CRR at glass transition region was also increased by styrene content. Therefore, the segmental relaxation in networks with higher crosslink density could be associated with stronger intermolecular coupling. In addition, it was observed that the mean required energy for internal rearrangement of structural units within the CRR decreased as the fragility index increased, while the mean barrier height for repositioning of a CRR in cooperation to its local environment was nearly constant.
Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, ,