| Article ID | Journal | Published Year | Pages | File Type |
|---|---|---|---|---|
| 5187929 | Polymer | 2005 | 11 Pages |
Abstract
The degradation pathway of polyamide 6/clay nanocomposites was studied as a function of clay content. Well-dispersed polymer-clay nanocomposites can be easily obtained by simple melt blending between organically-modified clays and polyamide 6. Polyamide 6-clay nanocomposites exhibit a large reduction in the peak heat release rate, 60%, measured by cone calorimetry. There are no significant differences in the evolved products during thermal degradation of polyamide 6 and polyamide 6/clay nanocomposites in terms of composition and functionality. The main degradation pathway of polyamide 6 is aminolysis and/or acidolysis, primarily through an intra-chain reaction, producing ε-carprolactam, which is the monomer of polyamide 6. As the clay loading is increased, the relative quantity of ε-carprolactam in the evolved products decreases and the viscosity of the soluble solid residues increases. It is thought that inter-chain reactions become significant in the presence of clay because the degrading polymer chains are trapped in the gallery space of the clay during thermal degradation.
Keywords
Related Topics
Physical Sciences and Engineering
Chemistry
Organic Chemistry
Authors
Bok Nam Jang, Charles A. Wilkie,
