Article ID Journal Published Year Pages File Type
5188023 Polymer 2009 6 Pages PDF
Abstract

We report here the preparation of nanostructured polypyrroles (PPys) with different morphologies (nanospherical or nanofibrillar) through a surfactant-assisted oxidative polymerization route. Nanofibrillar PPy has a higher redox current, presumably due to a higher surface area accessible to the electrolytes and a lower charge transfer resistance compared to that of the spherical PPy. The impedance spectrum of spherical PPy at lower frequencies suggests a semi-infinite diffusion process, while nanofibrillar PPy displays barrier diffusion and capacitor characteristics. Electrodeless (chemical) deposition of Au particles from AuCl4− aqueous solution using nanostructured PPy also shows different morphologies, presumably due to a difference in growth kinetics dominated by the differences in surface area and surface chemistry. Our work demonstrates control over the electrochemical responses and charge transfer mechanisms of these conducting polymers. This control arises from their unique length scale geometries and surface areas that allows for the fabrication of Au nanoparticles with tunable morphologies. Our work in the controlled synthesis of nanostructured conducting polymers and metal nanoparticles opens up new opportunities for nanofiber-based electronic and sensory devices.

Graphical abstractDownload full-size image

Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, , , , , ,