Article ID Journal Published Year Pages File Type
5189861 Polymer 2005 11 Pages PDF
Abstract

A dilute aqueous solution of the temperature-sensitive polymer, poly(vinyl methyl ether) (PVME), was irradiated by a pulsed electron beam in a closed-loop system. At temperatures, below the lower critical solution temperature (LCST), intramolecular crosslinked macromolecules, nanogels, were formed. With increasing radiation dose D the molecular weights Mw increase, whereas the dimensions (radius of gyration Rg, hydrodynamic radius Rh) of the formed nanogels decrease. The structure of the PVME nanogels was analyzed by field emission scanning electron microscopy (FESEM) and globular structures with d=(10-30) nm were observed. The phase-transition temperature of the nanogels, as determined by cloud point measurements, decreases from Tcr=36 °C (non-irradiated polymer) to Tcr=29 °C (cp=12.5 mM, D=15 kGy), because of the formation of additional crosslinks and an increase in molecular weights. The same behavior was observed for a pre-irradiated PVME (γ-irradiation) with higher molecular weight due to intermolecular crosslinks. After pulsed electron beam irradiation the molecular weight again slightly increases whereas the dimension decreases. Above D=1 kGy the calculated ρ-parameter (ρ=Rg/Rh) is in the range of ρ=0.5-0.6 that corresponds to freely draining globular structures.

Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, , , , , , ,