Article ID Journal Published Year Pages File Type
5189943 Polymer 2007 10 Pages PDF
Abstract
Rheological properties of aqueous solutions and hydrogels formed by an amphiphilic star block copolymer, poly(acrylic acid)-block-polystyrene (PAA54-b-PS6)4, were investigated as a function of the polymer concentration (Cp), temperature, and added salt concentration. The water-soluble polymer synthesised by atom transfer radical polymerization (ATRP) was found to form hydrogels at room temperature at polymer concentrations, Cp, over 22 g/L due to the interpolymer hydrophobic association of the PS blocks. Increasing Cp leads to stronger elastic networks at room temperature that show a gel-to-solution transition with increasing temperature. Increase of ionic strength decreases the moduli compared with the pure hydrogel but did not affect the gel-sol transition temperature significantly. Small-angle X-ray experiments showed two distinct scattering correlation peaks for samples above the gelling Cp, which indicates the aggregates formed due to hydrophobic association. Upon heating the intensity of the scattering correlation peaks was found to decrease indicating the loss of the network structure due to thermal motion.
Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, , , , , , , ,