Article ID Journal Published Year Pages File Type
5190231 Polymer 2006 8 Pages PDF
Abstract
Poly(tert-butyl acrylate) (PtBuA) was synthesized by atom transfer radical polymerization (ATRP) using methyl-2-bromo propionate (MBP) as an initiator in bulk at 80 °C. The successive ATRP of methyl methacrylate in diphenyl ether at 80 °C using previously obtained PtBuA as a macroinitiator led to formation of poly(tert-butyl acrylate-b-methyl methacrylate) (poly(tBuA-b-MMA)). The synthesized macroinitiator and block copolymer have controlled molecular weight and low polydispersity (Mw/Mn<1.2). The block copolymer was characterized by gel permeation chromatography (GPC) and 1H NMR. The retention diagrams of poly(tBuA-b-MMA) for some aliphatic esters and aromatic hydrocarbons were obtained using inverse gas chromatography (IGC) technique. The glass transition temperatures, Tgs of poly(tBuA-b-MMA) were determined by both differential scanning calorimeter (DSC) and IGC. It was observed that the block copolymer represents three Tgs at 50, 75 and 100 °C by IGC although it represents only one Tg at 71 °C by DSC. After the column was quenched from 180 to 0 °C, the Tg at 100 °C shifted to 105 °C however others did not change. Specific retention volumes, Vg0 and the thermodynamical polymer-solvent interaction parameters such as Flory-Huggins, χ12∞, equation-of-state, χ12* and effective exchange energy, Xeff were found for all studied solvents. Partial molar heat of sorption, ΔH¯1,sorp, partial molar heat of mixing, ΔH¯1∞ and molar heat of vaporization, ΔHv, were determined. In addition, the solubility parameter of the corresponding block copolymer, δ2 was determined as 11.0 (cal/cm3)1/2 at 25 °C.
Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, , , , , ,