Article ID Journal Published Year Pages File Type
5191092 Polymer 2005 15 Pages PDF
Abstract

Structure and property of a nanocomposite consisting of modified carbon nanofibers (MCNFs), homogenously dispersed in an elastomeric ethylene/propylene (EP) random copolymer (84.3 wt% P) matrix, were studied by in situ synchrotron X-ray diffraction during uniaxial deformation. The MCNF acted as a nucleating agent for crystallization of the α-form of isotactic polypropylene (iPP) in the matrix. During deformation at room temperature, strain-induced crystallization took place, while the transformation from the γ phase to α phase also occurred for both unfilled and 10 wt% MCNF-filled samples. The tensile strength of the filled material was consistently higher than that of pure copolymer. However, when compared with pure copolymer, the highly stretched nanocomposite exhibited a higher amount of unoriented crystals, a lower degree of crystal orientation and a higher amount of γ crystals. This behavior indicated that polymer crystals in the filled nanocomposite experienced a reduced load, suggesting an effective load transfer from the matrix to MCNFs. At elevated temperatures, the presence of MCNFs resulted in a thermally stable physically cross-linked network, which facilitated strain-induced crystallization and led to a remarkable improvement in the mechanical properties. For example, the toughness of the 10 wt% nanocomposite was found to increase by a factor of 150 times at 55 °C.

Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, , , , , ,