Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5191094 | Polymer | 2005 | 8 Pages |
Abstract
Polyamide 6 (PA6)/carbon nanotubes (PA6/CNTs) composites have been prepared by in situ polymerization of ε-caprolactam in the presence of pristine and carboxylated multi-walled carbon nanotubes (MWNT and MWNTCOOH). Viscosity measurements show that adding 0.5 wt% of carbon nanotubes (CNTs) does not affect the molecular weight of PA6. Compared with pure PA6, the yield strength of PA6/CNTs composites loaded with 0.5 wt% CNTs is almost unchanged, and the tensile strength is increased slightly. Dynamic mechanical analysis (DMA) demonstrates that both the storage modulus (Eâ²) and glass transition temperature (Tg) of the PA6/CNTs composites increase, particularly for PA6/MWNTCOOH, indicating there is some chemical bonding between PA6 and MWNTCOOH. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and ultra small-angle X-ray scattering (USAXS) show that MWNT and MWNTCOOH are well dispersed in PA6 matrix. Comparison of the USAXS data with a stiff-rod model and wormlike rod model reveals that the CNTs are quite flexible, regardless the degree of chemical modification. Due to the flexibility of CNTs, mechanical properties of the PA6/CNTs composites are marginally enhanced.
Keywords
Related Topics
Physical Sciences and Engineering
Chemistry
Organic Chemistry
Authors
Chungui Zhao, Guanjun Hu, Ryan Justice, Dale W. Schaefer, Shimin Zhang, Mingshu Yang, Charles C. Han,