Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5191928 | Polymer | 2005 | 6 Pages |
Abstract
Poly[(R)-3-hydroxybutyric acid] [R-P(3HB)] was hydrolyzed in high-temperature and high-pressure water at the temperature range of 180-300 °C and for a period of 360 min. The formation, racemization, and decomposition of 3-hydroxybutyric acids (3HBs) and molecular weight change of R-P(3HB) were investigated. The highest yield of (R)-3-hydroxybutyric acid (R-3HB), ca. 80%, was obtained at 200 °C in the hydrolytic degradation periods of 240-360 min. Too-high hydrolytic degradation temperature such as 300 °C induced the decomposition and racemization of formed 3HBs, resulting in decreased yield of R-3HB. The hydrolytic degradation of R-P(3HB) proceeds homogeneously and randomly via a bulk erosion mechanism. The molecular weight of R-P(3HB) decreased exponentially without formation of low-molecular-weight specific peaks originating from crystalline residues. The hydrolytic degradation rates in the melt estimated from Mn changes were lower for R-P(3HB) than for poly(l-lactide) (PLLA) in the temperature range of 180-220 °C. The activation energy for the hydrolytic degradation (ÎEh) of R-P(3HB) in the melt (180-250 °C) was 30.0 kcal molâ1, which is higher than 12.2 kcal molâ1 for PLLA in the melt in the temperature range (180-250 °C). This study reveals that hydrolytic degradation of PHB in the melt is an effective and simple method to obtain (R)-3HB and to prepare R-P(3HB) having different molecular weights without containing the specific low-molecular-weight chains, because of the removal of the effect caused by crystalline residues.
Related Topics
Physical Sciences and Engineering
Chemistry
Organic Chemistry
Authors
Takashi Saeki, Takayuki Tsukegi, Hideto Tsuji, Hiroyuki Daimon, Koichi Fujie,