Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5192033 | Polymer | 2005 | 7 Pages |
Abstract
Two series of biodegradable amphiphilic copolymers, poly(succinimide-co-N-propyl aspartamide) (PSI-PA) and poly(N-dodecyl aspartamide-co-N-propyl aspartamide) (PDDA-PA) were synthesized by partial and total aminolysis of polysuccinimide (PSI), respectively. PSI-PA copolymers could self-aggregate in water directly under ultrasonication at room temperature. Differing from PSI-PA copolymers, the aggregates of PDDA-PA need to add PDDA-PA DMF solution into an excessive amount of water. The aggregative properties of PSI-PA and PDDA-PA copolymers have been investigated by dynamic light scattering (DLS) and surface tension measurements. Hydrophilicity of these two copolymers was attributed to the N-propyl aspartamide segments. Due to the stiff structure, succinimide segments preferred to form irregular hydrophobic microdomains, and some aggregates of PSI-PA are bimodal size distribution in water medium, while the more flexible PDDA-PA copolymer chains preferred to form monodispersed spherical aggregates. Elevated temperature could reduce the aggregate size of both PSI-PA and PDDA-PA copolymers due to the breaking of the hydrogen bonding and the releasing of the bonded water molecules. PSI-PA copolymers were surface active, while the surface tension of PDDA-PA copolymers was independent on concentration. The drug-loaded aggregates of PSI-PA also have been prepared and the preliminary release properties have been studied in vitro.
Related Topics
Physical Sciences and Engineering
Chemistry
Organic Chemistry
Authors
Haoran Chen, Wen Xu, Tongyu Chen, Wuli Yang, Jianghua Hu, Changchun Wang,