Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5200684 | Polymer Degradation and Stability | 2017 | 11 Pages |
Abstract
The ozone stability of partially hydrogenated natural rubbers (HNRs) was evaluated. HNRs with the hydrogenation levels of 14, 33 and 65Â mol% including with vulcanization systems of peroxide and sulfur on ozone stability comparing with natural rubber (NR) and ethylene-propylene-diene-rubber (EPDM) vulcanizates were studied. The chemical structures of rubber vulcanizates were characterized by Raman spectroscopy. The surface cracks were observed by Raman optical microscopy. The results clearly exhibited that the ozone stability of HNRs vulcanizates was much greater than that of the NR vulcanizates. The difference between the integral intensities of C=C bonds of isoprene units in rubber chains by Raman spectroscopy before and after ozone exposed was minimized with the degree of hydrogenation. The depth of cracking observed by three-dimensional (3D) modes clearly decreased with an increase in the degree of hydrogenation, while no cracks on the surface of EPDM were found. These findings indicated that ozone stability increased with the degree of hydrogenation. Regarding the effect of vulcanizing systems, sulfur cure showed greater resistance to ozone degradation than peroxide cure.
Keywords
Related Topics
Physical Sciences and Engineering
Chemistry
Organic Chemistry
Authors
Korn Taksapattanakul, Tulyapong Tulyapitak, Pranee Phinyocheep, Polphat Ruamcharoen, Jareerat Ruamcharoen, Fabienne Lagarde, Philippe Daniel,