Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5200742 | Polymer Degradation and Stability | 2017 | 12 Pages |
Abstract
We have engineered a flame retardant ethylene-vinyl acetate (EVA) composite which has the similar mechanical properties as polyvinyl chloride (PVC) and therefore may prove to be an alternative material for cable sheathing. Four composites were studied, EVA with aluminum hydroxide (ATH), EVA with ATH and molybdenum disulfide (MoS2), EVA with ATH and graphene nanoplatelets (GNPs), and EVA with all three components. Tensile testing showed nearly identical results for the EVA/ATH and EVA/ATH/MoS2 compounds, while the EVA/ATH/GNPs compound had higher mechanical properties. The compound containing all three components showed further enhanced mechanical properties, indicating that a synergy was established. This was further confirmed using Scanning Electron Microscopy (SEM) where GNPs were seen to increase the dispersion of the MoS2 and ATH components within the polymer matrix. Cone calorimetry test clearly showed a large decrease in heat release rate when GNPs were added, which was further enhanced by adding GNPs and MoS2 together. Application of the UL-94 test showed that only the compound containing 36Â wt% of ATH and 2Â wt% each of MoS2 and GNPs can achieve the UL-94 V0 rating.
Related Topics
Physical Sciences and Engineering
Chemistry
Organic Chemistry
Authors
Yichen Guo, Yuan Xue, Xianghao Zuo, Linxi Zhang, Zhenhua Yang, Yuchen Zhou, Clement Marmorat, Shan He, Miriam Rafailovich,