Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5201415 | Polymer Degradation and Stability | 2015 | 13 Pages |
Abstract
Polybutadiene (PB)-SiO2 nanoparticles were successfully synthesized via differential microemulsion polymerization. The core-shell structured PB-SiO2 nanoparticles were designed to achieve a monodispersion with reduced nanosilica aggregation. A high monomer conversion (81.5%), grafting efficiency (78.5%) and small particle size (27 nm) with narrow size distribution was obtained under optimum reaction conditions when using an extremely low surfactant concentration, 5 wt% based on monomer. The PB-SiO2 latex could be hydrogenated by diimide reduction in the presence of hydrazine and hydrogen peroxide to provide hydrogenated polybutadiene (HPB)-SiO2. A high hydrogenation degree of 98.6% was achieved at a ratio of hydrazine to hydrogen peroxide of 0.75:1, and showed a maximum degradation temperature of 469.6 °C resulting in excellent thermal stability. A new nanocomposite of PB-SiO2 and HPB-SiO2 could be used as a novel nanofiller in natural rubber. Especially, NR/HPB-SiO2 composites had improved mechanical and thermal properties, and exhibited good resistance toward ozone exposure.
Keywords
Related Topics
Physical Sciences and Engineering
Chemistry
Organic Chemistry
Authors
Thanyaporn Tancharernrat, Garry L. Rempel, Pattarapan Prasassarakich,