Article ID Journal Published Year Pages File Type
5201532 Polymer Degradation and Stability 2015 10 Pages PDF
Abstract

The preservation of organic polymer solar cell (PSC) performances over time is of significant concern for their commercial development. A prime PSC degradation pathway is due to inherently photo-unstable conjugated polymers in the photo-active layer which bear continuous illumination in the presence of atmospheric oxygen that diffuses across the encapsulation layers to the whole device. This paper reports on the unexpected photostability of a low band gap polymer, namely poly[(benzo[1,2-b:4,5-b′]dithiophene)-alt-(thieno[3,4-c]pyrrole-4,6-dione)] (PBDTTPD), designed for efficient bulk heterojunction PSCs. An approach based on joint computational and spectroscopic studies is implemented to explain the unexpectedly high resistance of PBDTTPD towards photo-oxidation. It is shown that alkoxy side-chains on benzo[1,2-b;3,4-b]dithiophene (BDT) subunits mitigate the photodegradation of the whole polymer. Furthermore, PBDTTPD favours well-organized structures which inhibit the propagation of the chain oxidation process. Last but not least, results suggest that PBDTTPD is a self-protecting polymer. The first main highlight of this study is that the structure-photostability relationship of conjugated polymers can be dependent on both the macromolecular structure and the morphology of the polymer deposits. The second highlight is that the choice of solubilizing side-chains is a critical factor in the design of stable conjugated polymers for efficient PSCs.

Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, , , , , , , , , , ,