Article ID Journal Published Year Pages File Type
5201636 Polymer Degradation and Stability 2014 9 Pages PDF
Abstract
The combined effect of melt annealing and surface modification of multiwalled carbon nanotubes (MWCNT) on polypropylene (PP) based nanocomposites is reported. Melt annealing markedly improved the filler dispersion in PP. The rheological and electrical percolative threshold was achieved at a content of 3 wt% MWCNT, due to the dynamic reconstruction of nanotube network in the polymer matrix. This behaviour was particularly evident in the case of surface-modified MWCNT. However, the heat treatment also induced an overall worsening of mechanical properties due to polymer heterogeneous oxidation at a microscopic scale, as detected by oxygen mapping through SEM/EDS. Crack initiation sites eventually leading to the failure of the polymer were formed due to peroxide-mediated spreading of oxidation, radiating from residual polymerisation catalyst particles. FTIR-ATR spectroscopy demonstrated that blooming of the phenol stabilizer due to thermal annealing was responsible for early oxidation of polypropylene. The reported results highlight the advantages and drawbacks of physical strategies designed to improve the dispersion stability of nanotubes in polymer nanocomposites.
Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, , , , , ,