Article ID Journal Published Year Pages File Type
5202020 Polymer Degradation and Stability 2013 8 Pages PDF
Abstract
Four different lignins obtained from poplar wood (milled wood lignin: ML, organosolv lignin: OL, ionic liquid lignin: IL and Klason lignin: KL) were subjected to several types of chemical/thermal analyses to compare their structural features and thermal decomposition properties. The ML, OL, IL and KL yield from poplar wood was 5.5, 3.9, 5.8, 19.5 wt%, respectively. Functional group analysis revealed that during the OL and KL extraction processes, the condensation reaction involved with phenolic hydroxyl groups of lignins significantly prevailed, which led to a highly condensed OL and KL structure. Thermogravimetric analysis (TGA) results showed that OL and KL thermal stability was much higher than that of ML and IL. The derivatization followed by reductive cleavage (DFRC) data showed that the thermal stability was highly associated with the frequency of arylglycerol-β-aryl ether (β-O-4) linkages in the lignin polymers. Pyrolysis-GC/MS (Py-GC/MS) analysis confirmed that acetic acid and several types of phenolic compounds were the main lignin pyrolysis products. The maximum sum of ML (13.8 wt%), OL (9.9 wt%) and IL (11.8 wt%) pyrolysis products was obtained at the pyrolysis temperature of 600 °C, whereas KL (1.6 wt%) was significantly lower due to its high thermal stability and condensation degree. The S- and G-type pyrolysis products (S/G) ratio varied from 1.61 to 1.93 for ML, 2.28 to 5.28 for OL, 2.06 to 2.86 for IL and 1.40 to 2.20 for KL, depending on the pyrolysis temperature, which ranged between 400 °C and 700 °C.
Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, , , , ,