Article ID Journal Published Year Pages File Type
5202112 Polymer Degradation and Stability 2014 8 Pages PDF
Abstract

Accelerated ageing in natural sea water at different temperatures from 20 °C to 80 °C was performed on a silica filled polychloroprene rubber. Degradation when monitored with mechanical properties at both macroscopic and microscopic scale led to a large increase of the modulus coupled with a strong decrease of strain and stress at break. Data from tensile tests were used for lifetime prediction with an Arrhenius extrapolation for modulus, strain and stress at break. The validity of this lifetime prediction was evaluated using a 23 year-old sample aged in natural conditions. Strain at break could be predicted using an Arrhenius extrapolation with an activation energy of 50 kJ/mol. However, an extrapolation based on linear Arrhenius behaviour did not apply for modulus and stress at break due to the presence of a degradation profile across the sample. These observations confirmed that strain at break is not governed by bulk properties of samples but by the degradation rate at the external surface of the sample (i.e. in contact with water).

Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, , , ,