Article ID Journal Published Year Pages File Type
5202173 Polymer Degradation and Stability 2013 8 Pages PDF
Abstract
A novel organic-inorganic hybrid flame retardant consisting of a brucite core and a dodecylamine polyphosphate shell was synthesized by a facile nanoengineering route. The flammability characterization and synergistic flame retardant mechanism of the core/shell flame retardant (CFR) in ethylene-vinyl acetate (EVA) blends had been compared with EVA/physical mixture (PM, with the given proportion of brucite and dodecylamine polyphosphate as well as CFR) and EVA/brucite blends. With the same loading amount (40 wt%) of fillers in EVA, the peak heat release rate and smoke production rate of EVA/CFR blends were significantly reduced to 49% and 48% of that of EVA/PM blends, respectively. Meanwhile, the limiting oxygen index (LOI) was increased up to 32 (14.3% higher than that of EVA/PM blends) and the UL-94 test could achieve the V-0 rating. These remarkable properties were obtained just by nanoengineeing the core/shell structured brucite@polyphosphate@amine hybrid system, facilitating the formation of intact and compact residue with fence structure in process of polymer composite burning.
Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, , , , ,