Article ID Journal Published Year Pages File Type
5202893 Polymer Degradation and Stability 2011 6 Pages PDF
Abstract

Nanoindentation using atomic force microscopy (AFM) was conducted to investigate the affect of accelerated ultraviolet (UV) and thermal degradation on the mechanical properties of polypropylene fibers. The affect of degradation on Young's modulus across fiber cross-sections was investigated with progressive nanoindentation from the surface to the center of the fiber. UV degradation initially increases the Young's modulus both at the center and the surface of the fibers until 120 h of exposure with the increase being more rapid at the surface. Moduli started to decrease beyond 120 h of exposure. Wide angle x-ray scattering shows an increase of crystallinity up to 120 h of exposure and total destruction of crystallinity at 144 h. Infrared spectra showed the formation of carbonyl bonds with UV exposure. To investigate thermal degradation, the fibers were exposed to 125 °C for four weeks. Young's modulus increased near the surface after four weeks exposure. These results support the idea that surface degradation may lead to embrittlement of textile fibers.

Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, , ,