Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5202982 | Polymer Degradation and Stability | 2012 | 8 Pages |
Abstract
Filler nanoparticles pave the way for the development of novel halogen-free flame-retardant polymers. The aim of this study was to investigate the thermal degradability, and in particular, the thermal degradation mechanism of organophosphorus flame-retardant poly(methyl methacrylate) (PMMA) nanocomposites containing nanoclay (NC) and multi-walled carbon nanotubes (CNT). For this purpose, thermogravimetry and direct pyrolysis mass spectrometry analysis were utilized. The onset of degradation was delayed through increased maximum degradation temperature and suppressed mass loss corresponding to initial degradation stage with carbon nanotubes and nanoclays, respectively. Possibility of reactions of melamine and/or melamine derivatives and interactions between carbonyl groups of PMMA and phosphinic acid leading to thermally more stable products was increased owing to the barrier effect of filler nanoparticles. In the presence of NC better flame retarding characteristics was detected as anhydride formation, leading to charring being more effective.
Keywords
Related Topics
Physical Sciences and Engineering
Chemistry
Organic Chemistry
Authors
Tugba Orhan, Nihat Ali Isitman, Jale Hacaloglu, Cevdet Kaynak,