Article ID Journal Published Year Pages File Type
5203093 Polymer Degradation and Stability 2012 8 Pages PDF
Abstract

The depletion behavior of two types of hindered phenolic antioxidants (AO), Irganox® 1010 (I-1010) and Irganox®1076 (I-1076), in medium density polyethylene (MDPE)/nanoclay composite was evaluated by incubating samples in a forced air oven at 85 °C. The presence of 4 wt% nanoclay accelerated the depletion of both types of AO, particularly at the surface region of the sample. However, the depletion mechanism in the interior of sample was governed by the AO molecular structure. For samples containing the bulky Irganox®1010, OIT decreased exponentially with aging time consistent with a first order reaction. In contrast, an increase of OIT was detected in first 60 days of heat aging for sample containing I-1076 and afterward the OIT decreased slowly with aging time. The hypothesis for the initial increase of OIT is that the relatively small and linear structure of I-1076 may enable it to be trapped inside the nanoclay galleries and then subsequently released into the polymer matrix during heat aging.

Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, , , , , ,