Article ID Journal Published Year Pages File Type
5203272 Polymer Degradation and Stability 2010 11 Pages PDF
Abstract

Radiation used in biomedical applications causes chemical changes to biomedical materials. This work is an ex situ simulation of the influence of low-energy electron (LEE) impact and X-ray irradiation on the chemical properties of plasma-polymerized allylamine (PPA) bioactive and biocompatible stent coatings. Preliminary X-ray photoelectron spectroscopy (XPS) results show that PPA coatings oxidize in contact with ambient air by the detection of C-O and CO bonds which are typical of polymer oxidation. Chemical changes after LEE and X-ray irradiation are mainly a loss of oxygen, assuming a surface deoxidizing and not a complete destruction of the surface. XPS survey analyses show that the amine groups remain stable during irradiation. LEE impact measurements by TOF mass spectrometry show that the main ionic losses are H− ions. It appears that CN groups are stable under irradiation and we observe a loss of hydrogen and oxygen as the main chemical modifications. In conclusion, these results suggest that PPA coatings are stable under biomedical radiation, and they can therefore be used for bioactive and biocompatible stent coatings.

Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, , , , , , ,