Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5203921 | Polymer Degradation and Stability | 2009 | 6 Pages |
Abstract
Degradation is often a critical property of materials utilized in tissue engineering. Although alginate, a naturally derived polysaccharide, is an attractive material due to its biocompatibility and ability to form hydrogels, its slow and uncontrollable degradation can be an undesirable feature. In this study, the degradation behavior of hydrogel based on oxidized sodium alginate (OSA) crosslinked with Ca2+ was studied in phosphate buffer solution (PBS, pH = 7.4) and Tris-(hydroxymethyl) aminomethane-HCl (Tris-HCl, pH = 7.4) at 37 °C. The degradation behavior of OSA hydrogels with different degrees of oxidation was evaluated as a function of degradation time by monitoring the changes of molecular weight and weight loss. It was found that the degradation behavior relied heavily on the degree of oxidation and the surrounding medium. This result indicates that the degradation rates of OSA hydrogels can be controlled by changing the degree of oxidation.
Keywords
Related Topics
Physical Sciences and Engineering
Chemistry
Organic Chemistry
Authors
Chunmei Gao, Mingzhu Liu, Jun Chen, Xu Zhang,