Article ID Journal Published Year Pages File Type
5204026 Polymer Degradation and Stability 2010 8 Pages PDF
Abstract
Poly(l-lactide) (PLLA)/poly(d-lactide) (PDLA) blend specimens containing only stereocomplex as crystalline species, together with those of pure PLLA and PDLA specimens, were prepared by solution crystallization using acetonitrile as the solvent. Their accelerated hydrolytic degradation was carried out in phosphate-buffered solution at elevated temperatures of 70-97 °C up to the late stage. During hydrolytic degradation, the stereocomplex crystalline residues were first traced by gel permeation chromatography. Similar to the hydrolytic degradation of pure PLLA and PDLA specimens, the hydrolytic degradation of stereocomplexed PLLA/PDLA blend specimens slowed down at the late stage when most of the amorphous chains were removed and crystalline resides were formed and degraded. The estimated activation energy for hydrolytic degradation of stereocomplex crystalline residues (97.3 kJ mol−1) is significantly higher than 75.2 kJ mol−1 reported for α-form of PLLA crystalline residues. This indicates that the stereocomplex crystalline residues showed the higher hydrolysis resistance compared to that of α-form of PLLA crystalline residues.
Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, ,