Article ID Journal Published Year Pages File Type
5204199 Polymer Degradation and Stability 2008 7 Pages PDF
Abstract
The essential chemical modifications involving the polymeric constituents of wood in friction welding occur in the first 5-6 s slowing down or even stopping afterwards. FT-IR and CP-MAS 13C NMR of the welded area of wood have shown dehydration and an apparent increase in the crystallinity of cellulose. A certain level of hemicelluloses degradation occurs, accompanied by the generation of some furfural. Cellulose degradation is instead very slight. Both analytical techniques show an increase in the proportion of lignin in the welding interphase. A proportion of methoxy groups of lignin is de-etherified to phenolic hydroxy groups. Self-condensation of lignin occurs by internal rearrangement with the formation of Ar-Ar and Ar-CH2-Ar bridges. This progresses throughout the whole process of welding. The formation of C-O-C bridges, although stopping after 6 s welding, at the start of wood carbonisation, also appears to contribute to the increase in cross-linking of the lignin network.
Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, , , , ,