Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5204262 | Polymer Degradation and Stability | 2008 | 6 Pages |
Abstract
It has been shown that heating polypropylene powder under a nitrogen atmosphere leads to the significant prolongation of the oxidation induction time measured by chemiluminescence in oxygen at 130 and 140 °C. While heating in nitrogen from 0 to 4 h at 140 °C leads to the linear increase of oxidation induction time, the maximum chemiluminescence intensity Istat increases with the time of sample annealing until 2 h; then it starts to decay. The different and sometime unknown thermal history of the sample may thus explain the scatter of induction times of oxidation observed with different PPs whether they be pure or stabilised. Maximum chemiluminescence intensity plotted vs. concentration of oxygen in the surrounding atmosphere at 130 and 140 °C also increases linearly; however, this does not correspond with very small reduction of oxidation induction time. The four-parametric “master equations” used in our earlier papers were applied to fit the chemiluminescence runs both in oxygen and in nitrogen. The equation operates with the rate constants of hydroperoxide decomposition and oxidation spreading but at the same time, it takes into account the possible effect of oxidation products on decomposition of hydroperoxides.
Related Topics
Physical Sciences and Engineering
Chemistry
Organic Chemistry
Authors
Marta MalÃková, Jozef Rychlý, Lyda Matisová-Rychlá,