Article ID Journal Published Year Pages File Type
5204343 Polymer Degradation and Stability 2007 7 Pages PDF
Abstract

Polyorganophosphazenes substituted by glycino ethyl ester and allylamine with different ratios were synthesized and their structures were characterized by 1H NMR, 31P NMR and FTIR. Via the crosslink reaction, a novel biodegradable crosslinked polyorganophosphazene material was obtained. DSC and FTIR spectra indicated the occurrence of crosslink. Hydrolysis studies were also performed to compare the crosslinked polymers with linear ones. The co-substituted polyorganophosphazenes with more allylamine at pendant groups exhibited a lower degradation rate than poly[bis(glycino ethyl ester)phosphazene] and crosslinked polyphosphazenes had an even lower degradation rate. SEM photographs characterized the surface of polyphosphazenes films after hydrolytic degradation, confirming that uncrosslinked ones had outstanding hydrolytic evidences at the surface while the crosslinked ones only had sporadic small erosion holes, remaining much smoother.

Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, , ,