Article ID Journal Published Year Pages File Type
5204595 Polymer Degradation and Stability 2006 8 Pages PDF
Abstract
The propensity of (natural) polyols dispersed in heavy metal- and zinc-free PVC sheets to improve the initial colour, e.g. the colour during the first minutes of exposure to high processing temperatures (short-term stability), has been investigated. It is shown using W(Lab) values that the initial colour improves upon addition of polyols containing primary hydroxyl groups. The polyols act as HCl scavengers, presumably via an acid-catalysed SN2 substitution of the primary hydroxyl groups by chloride ions. In contrast, polyols with only secondary or tertiary hydroxyl groups accelerate the thermal degradation of PVC. Notwithstanding, the efficacy of the (natural) polyols containing primary hydroxyl groups will be reduced if the polyol is susceptible to competitive acid-catalysed intramolecular cyclodehydration reactions under the processing conditions. This is substantiated by a comparison of the behaviour of mannitol and 3,4-di-O-methyl-d-mannitol. The methylated derivative, which is less prone to undergo intramolecular cyclodehydration, improves the initial colour of heavy metal- and zinc-free PVC sheets more significantly than mannitol itself.
Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, , , , ,