Article ID Journal Published Year Pages File Type
5204686 Polymer Degradation and Stability 2008 9 Pages PDF
Abstract
A diglycidylether sulfone monomer (sulfone type epoxy monomer, SEP) was prepared from bis(4-hydroxyphenyl) sulfone (SDOL) and epichlorohydrin without any NaOH or KOH as basic catalyst. FT-IR, 1H NMR, 13C NMR and mass spectroscopic instruments were utilized to determine the structure of the SEP monomer. The cured SEP epoxy material exhibited not only a higher Tg (163.81 °C) but also a higher Tg than pristine DGEBA (from 111.25 °C to 139.17 °C) when the SEP monomer moiety had been introduced into the DGEBA system. The thermal stability of cured epoxy herein was investigated by thermogravimetric analysis (TGA). The results demonstrated that the sulfone group of the cured SEP material decomposed at lower temperatures and formed thermally stable sulfate compounds, improving char yield and enhancing resistance against thermal oxidation. Additionally, the IPDT and char yield of the cured SEP epoxy (IPDT = 1455.75, char yield = 39.67%) exceeded those of conventional DGEBA epoxy (IPDT = 667.27, char yield = 16.25%).
Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, , , ,