Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5204694 | Polymer Degradation and Stability | 2008 | 8 Pages |
Abstract
Degradation profiles and surface wettability are critical for optimal application of electrospun fibrous mats as drug carriers, tissue growth scaffolds and wound dressing materials. The effect of surface morphologies and chemical groups on surface wettability, and the resulting matrix degradation profiles were firstly assessed for electrospun poly(d,l-lactide) (PDLLA) and poly(d,l-lactide)-poly(ethylene glycol) (PELA) fibers. The air entrapment between the fiber interfaces clarified the effects of various surface morphologies on the surface wettability. Chemical groups with lower binding energy were enriched on the fiber surface due to the high voltage of the electrospinning process, and a surface erosion pattern was detected in the degradation of electrospun PDLLA fibers, which was quite different from the bulk degradation pattern for other forms of PDLLA. Contributed by the hydrophilic poly(ethylene glycol) segments, the degradation of electrospun PELA fibers with hydrophobic surface followed a pattern different from surface erosion and typical bulk degradation.
Related Topics
Physical Sciences and Engineering
Chemistry
Organic Chemistry
Authors
Wenguo Cui, Xiaohong Li, Shaobing Zhou, Jie Weng,