Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5205185 | Polymer Degradation and Stability | 2006 | 7 Pages |
Abstract
A new Acidithiobacillus ferrooxidans cell immobilization technique utilizing the complex of PVA solution and sodium alginate solution crosslinked by Ca(NO3)2 as entrapment medium is reported. The mixture of A. ferrooxidans suspension and the entrapment complex were extruded into a solution of Ca(NO3)2 (1-5%) to form beads, then the beads were frozen at â20 °C for 1-2 days and thawed at room temperature. The forming mechanism, characteristic of this immobilized beads and the factors affecting activity of immobilized cells were also discussed. A maximum oxidation rate of 4.6 g Fe2+/(L h) was achieved in batch cultures by these immobilized cells. Precipitation formed during culture process was analyzed. The forming mechanism of this precipitation and how this precipitation affects the whole system were also discussed. In addition, the immobilization technique is operated simply, and the gel beads have high stability even under non-sterile conditions. So its application on an industrial scale would be more practicable.
Related Topics
Physical Sciences and Engineering
Chemistry
Organic Chemistry
Authors
Wang Yujian, Yang Xiaojuan, Li Hongyu, Tu Wei,