Article ID Journal Published Year Pages File Type
5205307 Polymer Testing 2017 10 Pages PDF
Abstract

This paper presents an experimental study on the impact behaviour of composite laminates made of a Dyneema® woven fabric and four different resin matrices. Three thicknesses of each kind of resin laminate were subjected to impact by a spherical steel projectile in a velocity regime ranging from 100 to 200 m/s. The results revealed that the laminates having flexible matrices performed much better in perforation resistance and energy absorption, but had a greater extent of deformation and damage than the counterparts with rigid matrices. It was found that the matrix rigidity played a crucial role in controlling the propagation of transverse deformation, and thereby the local strain and perforation resistance of laminates. The more rigid matrix restrained the laminate's transverse deformation to a smaller area at a given time, which led to higher local strain and lower perforation resistance. Fibre failure in tension was identified as the dominant failure mechanism for the tested laminates.

Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, , , , ,