Article ID Journal Published Year Pages File Type
5205682 Polymer Testing 2017 8 Pages PDF
Abstract

Poly-(butylene adipate-co-terephthalate) (PBAT) has captured significant interest by dint of its biodegradability, superb ductility, promising processing properties and good final properties, but the insufficient barrier performance limits its application, especially in packaging field. In the present work, improved barrier properties of PBAT films were obtained by introducing an extremely low amount of graphene oxide nanosheets (GONS). O2 and water vapor permeability coefficients were decreased by more than 70% and 36% at the GONS loading of 0.35 vol%, respectively. The enhanced barrier performance was ascribed to the outstanding impermeability and well dispersion of GONS as well as the strong interfacial adhesion between GONS and PBAT matrix. Furthermore, tensile strength and Young's modulus of GONS/PBAT nanocomposite rise up to 27.8 MPa and 72.2 MPa from 24.6 MPa to 58.5 MPa of neat PBAT, respectively, showing a prominent increase of mechanical properties compared to neat PBAT. The incorporation of GONS also endowed PBAT matrix with an excellent thermal stability. These findings provide a significant guidance for fabricating high barrier films on a large scale.

Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, , , , , ,