Article ID Journal Published Year Pages File Type
5206068 Polymer Testing 2015 11 Pages PDF
Abstract

A comprehensive approach is proposed for studying the microstructure of filled rubbers by optical and atomic force microscopy (AFM). The optical results are found to be dependent on the illumination angle. Algorithms based on the mathematical morphology are developed for the processing of optical images (removing scratches, identifying agglomerates). AFM-images are treated by a segmentation method which separates a continuous surface into segments that match filler. Parameters of secondary filler structures and the size of an area of homogeneous filler dispersion are obtained from the analysis of the segmented images. Seven carbon black filled rubbers with different mixing times are investigated. The combination of AFM with optical imaging techniques makes it possible to perform a quantitative structural analysis at scales from tens of nanometers to tens of microns, and to establish the relationship between the mixing time and the filler microstructure over the whole range of filler peculiarities.

Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, , ,