Article ID Journal Published Year Pages File Type
5206409 Polymer Testing 2013 11 Pages PDF
Abstract

The low velocity impact performance of domestic aramid fibre reinforced laminates is investigated experimentally and numerically. Laminates with different thicknesses are impacted by drop-weight test machine under different impact energies. The time histories of impact force are recorded and ultrasonic C-scan technology is used to inspect the internal damage of the laminates. Numerical simulation is conducted using finite element method (FEM), taking into account both intralaminar and interlaminar damage. The intralaminar damage model is based on the continuum damage mechanics (CDM) approach, which consists of the strain-based Hashin failure criteria and the exponential damage evolution law, and considers the nonlinear shear behaviour of the material. The interlaminar damage is simulated by interface elements with cohesive zone model. The numerical results show good agreements with the experiments, thus verifying the validity of the presented numerical model.

Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, , ,