Article ID Journal Published Year Pages File Type
5207876 Progress in Polymer Science 2017 50 Pages PDF
Abstract
Aza-Michael reaction is a simple and accessible addition reaction performed at moderate temperature, possibly without a catalyst and without releasing by-products. Its versatility allows designing specific structures thanks to the availability of a multitude of Michael acceptors and Michael donors. The reaction rate of the aza-Michael reaction can be improved by adding different co-reactants (polar protic solvents, catalysts) and/or adjusting the external energy sources (e.g. moderate to high temperatures or high pressures). Here, we show that this addition reaction is efficient for modifying or curing silicon-containing molecules, oligomers and polymers. The pros and cons of applying the aza-Michael reaction to silicon-containing molecules (including alkoxysilanes and PDMS) are highlighted. A large variety of intermediates such as coupling agents, reactive diluents, and sol-gel precursors prepared by the aza-Michael reaction are presented. Finally, applications of these, including products ranging from functional silicone intermediates to soft (unfilled) elastomers, are reported.
Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, , , ,