Article ID Journal Published Year Pages File Type
5208098 Progress in Polymer Science 2015 15 Pages PDF
Abstract

This review discusses some general aspects of the highly directional intermolecular interactions in organic solids, followed by an overview of π-conjugated systems exhibiting directional preference in the intermolecular connection and demonstrating enhanced energy and/or charge carrier transfer. As examples, “small” dyes and pigments, “intermediate-sized” N-heteroacenes, and “large” hydrogen-bonded oligomers are considered. In all of these systems the intermolecular interactions between polarized peripheries of the π-conjugated moieties ensure a preferential direction in the molecular packing. The most important among these interactions are hydrogen bonds (both strong and weak). As demonstrated recently, hydrogen bonding represents a dominant attractive force even for molecules with different polarization of the π-conjugated aromatic or heterocyclic moieties, considered to be the most favorable condition for “face-to-face” orientation (π-π stacking).The solid-state anisotropy, most likely, results from the nematic liquid-crystalline ordering of both thermotropic and lyotropic origin. Moreover, the unique efficiency of the exciton diffusion in the J-aggregates of dyes indicates significant potential of the nematic liquid-crystalline state itself for the design of organic semiconductors.

Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, ,