Article ID Journal Published Year Pages File Type
5208946 Progress in Polymer Science 2007 26 Pages PDF
Abstract

The historical development of research on the living polymerization process in polycondensation is reviewed. Classical polycondensation is a step-growth process, but a living polymerization polycondensation must proceed by a chain-growth rather than a step growth mechanism. Early work demonstrated that some polycondensations do not obey Flory's statistical treatment: for example, high molecular weight polymer may be obtained, even at low conversion. This means that a chain-growth mechanism must be involved, with or without a step-growth mechanism. Recent years have seen dramatic development in understanding of polycondensations that proceed only by chain-growth (chain-growth polycondensation). Several possible mechanisms are: (1) activation of the polymer end group by changed substituent effects between the monomer and the polymer, as with aromatic polyamides, polyesters, polyethers, poly(ether sulfone)s and poly(ether ketone)s; (2) activation of the polymer end group by transfer to it of the catalyst, as with polythiophenes; (3) transfer of the reactive species, derived from the initiator, to the polymer end group, as with polymethylenes and polyphosphazenes; and (4) phase-transfer polymerization in a biphase composed of a monomer storage phase and a polymerization phase, as with aliphatic polyesters. These chain-growth polycondensations have been applied to the synthesis of condensation polymers with various architectures: block copolymers, star polymers, graft copolymers, etc.

Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, ,