Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5209227 | Progress in Polymer Science | 2015 | 67 Pages |
Abstract
The separation of the final product of a reaction from byproducts, catalysts, or excess reagents is a process common to all synthetic procedures. Various methods to facilitate such separations continue to receive increasing attention as avenues to refine synthetic protocols. This review discusses recent developments in one of these areas, the use of soluble polymers as supports for organic synthesis and catalysis. The general purpose of such work is to combine the principal beneficial features of heterogeneous and homogeneous systems to achieve facile product/catalyst recovery without the polymer affecting the chemistry of known solution-phase processes. The work described here demonstrates that it is often possible to engineer a desired solubility profile, phase behavior, reactivity/selectivity profile, and other beneficial properties into a synthetic reagent or catalyst system by an appropriate choice of soluble polymer support and recovery scheme. In this review, emphasis is given to research published within the last two years.
Keywords
Related Topics
Physical Sciences and Engineering
Chemistry
Organic Chemistry
Authors
Philip L Osburn, David E Bergbreiter,