Article ID Journal Published Year Pages File Type
5210160 Reactive and Functional Polymers 2013 10 Pages PDF
Abstract
The formation of a novel type of hydrogel that combines chemically and physically crosslinked networks in a dual-network approach is presented here. Chitosan (CHT) and chondroitin sulfate (CS) were chemically modified with glycidyl methacrylate (GMA) and then crosslinked. The chemical hydrogels (CHT- and CS-gel) were deposited in different vials filled with CS or CHT stock solutions to form the dual-network hydrogels. FTIR, TGA and XRD analyses were used to characterize the chemical and the dual-network hydrogels. The percentages of CS or CHT complexed to the CHT- and CS-gel networks were calculated from the HPLC data. SEM images and swelling assays indicated that the formation of a secondary network by polyelectrolyte complexation changes the morphologies and liquid uptake capacities of the chemical hydrogels. Hence, the data and discussion presented here enable the formation of dual-network hydrogels with very interesting properties, such as the ability to interact with charged specimens (i.e., drugs, proteins or metal ions), a desirable feature for a wide range of applications.
Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, , , ,