Article ID Journal Published Year Pages File Type
5210199 Reactive and Functional Polymers 2012 7 Pages PDF
Abstract

Solid phase radical scavengers have been prepared by the immobilization of antioxidant (AOX) compounds on macroporous polymers. Poly(glycidylmethacrylate-co-trimethylolpropane trimethacrylate) [poly(GMA-TRIM)] and poly(N-acryloyl-tris(hydroxymethyl)aminomethane-co-glycidylmethacrylate-co-N,N′-methylenebisacrylamide) [poly(NAT-GMA-BIS)] were prepared by free radical polymerization using a mixture of dimethylsulfoxide (DMSO)-poly(ethyleneglycol) 6000 (PEG 6000) as a porogenic solvent. The polymers were aminated with ethylenediamine (EDA) and the linkage of the polyphenolic compounds (gallic and caffeic acids) was carried out by two different approaches: through N,N′-dicyclohexylcarbodiimide/4-dimethylaminepyridine (DCC/DMAP) system (one-step method) or through the previous formation of the acyl chloride of the polyphenolic compounds and subsequent amidation reaction (two-step method). The available phenolic groups on the macroporous polymers were determined using the Folin-Ciocalteu method; the radical scavenging properties of the materials prepared were evaluated using the radical species 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) and 2,2′-azino-bis-[3-ethylbenzothiazoline-6-sulfonic acid] radical cation (ABTS+). From the results, higher antiradical capacities were obtained with the polymers in which the immobilization of the antioxidant molecules was performed through the two-step method. The polymeric networks prepared in this work yielded up to 13.2 μmol AOX/g of dry polymer, which allowed a quantitative removal of the radicals tested in less than 30 min.

Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, , , , ,